
Update on fuzzy clustering
Ben Carls

1

2

Since the last update
•  Concentrating on evaluations, will

demonstrate efficiency and purity
•  A few things have changed, a lot of effort

has gone into examining showers
– Difficult to reconstruct, difficult to identify

versus tracks
– Now taking advantage of tools developed by

Andrzej Szelc

Handling showers
Hough line finder very
effective at finding lines in
showers

Using A. Szelc’s figure of
merit for shower
identification

Assuming a cut on the
figure of merit is met,
merge lines assuming
they are close enough (no
angle cut)

d

d

d

d

3

Shower likeness

4

•  Around each line, sum up distance from a
hit to the line, then divide by the charge of
the hit, value will be large for showers

d

d

Shower likeness

5

ortdist = Get2DDistance(wire_on_line,time_on_line,wire,time);
reweight = (ortdist<1.) ? 0.1 : ortdist;

Tracks
Merging tracks with slopes
within 5° of each other

A second merging is then
performed using a wider
angle (30°), and examining
charge

The average charge
deposition of the 5 nearest
hits of each line are used to
construct an asymmetry:

6

qasymm =
qline1 − qline2
qline1 + qline2

Overview of the algorithm

Run fuzzy clustering,
merge as needed

Run Hough line finder Look and construct
proto-showers

Merge fuzzy cluster
remnants into
merged Hough
lines

7

Merge tracks with
slopes within 5°

Merge tracks with
slopes within 30°
and having similar
charge at intercept

Purity and Efficiency
•  Evaluated using the product of efficiency and purity

found in the BackTracker

 Select values for trackIDs having the highest purity
•  Comparison is tricky since Fuzzy Clustering and

DBSCAN/Hough/Line Merger give different products
•  Looked at 1,000 CCQE events

8

Purity = # hits from trackID in cluster
total # hits in cluster examined

Efficiency = # hits from trackID in cluster
total # hits for that trackID

An example with DBSCAN

9

•  We expect a lot of high purity clusters, lots of little clusters with only the
hits from the electron shower

•  We expect a lot of low efficiency clusters though, lots of the little clusters
will have only a small portion of hits from the electron shower

•  I’ve highlighted several of these in red

Fuzzy clustering

10

DBSCAN

11

Line Merger

12

This comes from running DBSCAN, Hough Line Finder, then Line Merger

Fuzzy clustering

13

Shower direction issues

14

Algorithm got the
shower direction
wrong

Results in the proton
being merged with
the electron shower

Need a better way

15

Where it stands now
•  I want to continue looking at how different

parameters alter purity and efficiency
•  Update documentation, draft is on

Redmine
•  Use new tools as they become available,

specifically from Andrzej and Wes

Back up

16

17

Start with fuzzy clustering

Merge the clusters

Fuzzy clustering assigns
degrees of belonging,
instead of definite
belonging

Number of clusters
determined using an
optimization criteria (Xie-
Beni index)

After running, the
clusters are merged
together

18

Hough line finder

•  Run the Hough line finder to identify tracks
and showers

Going even faster with a PPHT
•  Early work using a Progressive Probabilistic Hough

Transform (PPHT) has further increased speed
•  The algorithm is fairly simple:

19

1.  Randomly select one hit, remove it from the image
2.  Check if the highest peak in the accumulator modified

by the pixel is higher than a threshold cut; if not, go to
step 1

3.  Add points along the line, removing them from the
image

4.  Remove hits from the accumulator from the line that
was found

5.  Repeat step 1 if the image is not yet empty

J. Matas et al., Robust Detection of Lines Using the Progressive Probabilistic Hough
Transform, Computer Vision and Image Understanding, Volume 78, Issue 1, April 2000,
Pages 119–137

PPHT performance

10,000 θ bins (6 min.)

20
20,000 θ bins (1 min.)

Hough transform

y = −
cosθ
sinθ

"

#
$

%

&
'x +

r
sinθ
"

#
$

%

&
'

Use the parameterization:

Fill a matrix (accumulator) in (r,θ)
space with:

r(θ) = x0 ⋅cosθ + y0 ⋅sinθ

We then search the
accumulator for the most
populated bin, rather
computationally demanding

The accumulator, binned 21

